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The resu l t s  of a theore t ica l  investigation of the fluid flow in the gap between a rotat ing disk 
and a fixed wall a re  presented .  The var ia t ions  of the ra te  of twisting of the fluid and the s t a -  
t i s t ical  p r e s s u r e  along the radius  a re  analyzed for  the case  of centr ipeta l  flow. 

A knowledge of the ra te  of twisting of the fluid flowing past  the rotat ing disk and of i ts  p r e s s u r e  change 
is n e c e s s a r y  for  computing the t he rm a l  state of turbine disks and also for  a more  accura te  determinat ion of 
the total t e m p e r a t u r e  and the fr ic t ion at the heat-eXchange surface .  

The flow between a rota t ing disk and a fixed wall in  the p resence  of c r o s s  flow f rom the cen te r  to the 
per iphery  and f rom the pe r iphery  to the cen te r  has been invest igated in a number  of studies.  For  example,  
in [1] the pa r t i cu la r  case  is invest igated where the fr ic t ion at the wall and the disk a re  equal and the az i -  
muthal veloci ty of a i r  at the midpoint of the gap is always s m a l l e r  than that of the disk ( V u / w r  < 1). 

In real  conditions the coeff icients  of fr ict ion at the wall and the disk cannot be equal. As shown in 
[2], the re la t ive  azimuthal  veloci ty Vu/wr  can change in wide l imi ts  depending on the magnitude of the c r o s s  
flow mad, as  is wellknown, the coeff icients  of frictLon can be equal only for  Vu/wr  = 0.5. 

In [3] the prob lem is solved in a more  general  formulat ion,  when the f r ic t ions  at the wall and the disk 
a re  not equal. However,  in this  work the effect  of compressibi lLty of the fluid in the radial  flow is not taken 
into considerat ion.  

We consider  the flow in a re la t ively  la rge  gap between a fixed wall and a rotat ing disk in the p resence  
of c ro s s  flow both f rom the cen te r  to the pe r iphery  (centrifugal flow) and f r o m  the pe r iphery  to the cen te r  
(centripetal flow) when the fr ict ional  drag f rom the radial  component  of the veloci ty  can be d is regarded .  In 
view of the fact  that an exact  solution of this p rob lem is not possible ,  he re  we c a r r y  out the investigation 
under the following simplifying assumpt ions:  

the flow is taken to be one-dimensional  without consider ing the secondary  phenomena; 

the coefficient  of fr ict ion is constant along the radius;  

the fr ic t ion at the wall and the  disk resu l t s  only in a change of the momentum of the fluid in the az i -  
muthal direction; 

the compress ib i l i t y  of the fluid is taken into considerat ion only for  the flow in the radial  direction. 

Under these assumpt ions  the change in the moment  of momentum of an annular  e lement  dr under the 
action of fr ic t ional  fo rces  at the wall and the disk can be e x p r e s s e d  in the form:  

A. For  centr ipeta l  flow 

B. Fo r  centr i fugal  flow 

m'~-rd (rV,,) = -T- 2ar2pg d (r V~')z- -'- 2~tr2p~ w -~-"  V2 (1) 

m s (rV=) = '_- 2~r2p~d (o~r - -  V~) ~ 2~tr-p~ w �9 
2 -2-  (2) 
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Fig. 1. Variat ion of re la t ive  twist ing of the fluid along the 
radius  in centr ipeta l  flow. Continuous l ines,  ~ = 1.5; dashes,  

=0.667: I) Vu, 1=0 .8 ;  II) 0: 1) a =10;  2) 1; 3) 0. i .  

In these  equations the sign of the f i r s t  t e r m  on the r ight  hand side is taken posi t ive or  negative depend- 
ing on the magnitude and direct ion of the initial twist ing of the fluid. Writ ing these  equations in d imension-  
l e s s  fo rm and introducing the notations 

r ~w 2U~l~~ Vu x = - - , ~ -  , a -  , ~ =  , 
rx ~ d . m8 or 

we obtain: 

A. For  centr ipeta l  flow 

B. Fo r  centr i fugal  flow 

Here  

V u , I <  1, VU, l ~/ i 

" x ~ )  a (x ~ ' - x v &  = -  4-2 (3) 

V~,o "~ 1~ ~'~,o > .1 

- '  'dx 
(4) 

~%,1 V~'I V~,o . . . .  �9 and 17~, o ?-- 
(DF 1 (I)7" o 

is the initial re la t ive  twist  of the flute. 

Equations (3) and (4) a r e  Riccat i  type equations; as  is well known, these equations cannot be solved 
direct ly  in an analyt ical  fo rm.  

Introducing the notation y = xZl7 u for  s implifying writ ing and using a substitution of the f o r m  

x2-- V + ~ dx Z =  exp _+ a 2 

a f t e r  some manipulat ions we obtain the following differential  equations: 

A. ~u , l<  1 and ~u,l>/ 1 

Z". +_ ax.--~ -~- x ~ Z = O ;  

(5) 

(6) 
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Fig. 2. Var ia t ion  of re la t ive  
twisting of the fluid along the r a -  
dius in centr ipeta l  flow. Contin- 
uous curves  a = 10; dashes,  a 
=I; ~ =0.667: I) Vu,I=--I; 2) 
--0.8; 3)--0.6; 4)--0.4; 5)--0.2. 

As is well known, the general  solution of a second o rde r  equa-  
tion can be wri t ten in the fo rm 

" z (x) = c l z l  (x) + Q z ~  (x), (8) 

Equations (6) and (7) a re  Whittaker type equations and can be 
solved using power se r i e s .  Without discuss ing the c h a r a c t e r i s t i c s  
of the method in detail ,  which can be found in any appropr ia te  text  
book, we give only the final fo rmulas  for  determining the ra te  of 
twisting a t  the midpoint of the gap: 

A. V,,,~ < t, 

1 I ~ -  2 
9~ = (1 ~ )  ax ~ 

13. lYu,0 ~ 1 , 

Q~ 1 1 :i: ~_2 
(I ~ ~) ax" 

Here  a f te r  contract ion 
is obtained. Constant 
boundary conditions: 

P~,~ ~ 1 

ZI (x)-:- DZ~ (x) ] . (9) 
Z 1 (x) + DZ~ (x) J ' 

Vu,o > 1 

Z~ (x) '-- DZ~_ (x) ] 
Z 1.(x)-',- DZ~ (x) .I 

i 

by C1 a single integrat ion constant D = C2/C 1 
D must  be de te rmined  f r o m  the following 

x = 1, Vu = Vu,1 for  cent r ipe ta l  flow, 

x = x 0, Vu = ~'u,0 for  centr i fugal  flow. 

The above fo rmulas  can be used for  computing the ra te  for  all 

(lo) 

values  of Vu,l, Vu,0, and ~ except the case  Vu,1 < 1 and ~ = 1 and 
also Vu,0 -< 1 and ~ = 1. For  these  values  of ~ Eqs. (9) and (10) become inapplicable,  These pa r t i cu la r  
c a s e s  co r r e spond  to the conditions invest igated in [1]. 

Computations using the r e su l t s  of [4] were  c a r r i e d  out in o rde r  to check the fo rmulas  for  ~ ~ 1 and to 
control  the c o r r e c t n e s s  of the p r o g r a m  compiled for  the computer .  In this connection it mus t  be pointed 
out that in [4] and [5] fluid fl0w between two rotat ing disks with identical veloci ty  was investigated. The 
same  resu l t  can be obtained f rom the p resen t  investigation if we take ~ = 0 (i. e . ,  absence of fr ict ion at the 
fixed wall) and the effect  of interact ion with the rotat ing disk is doubled. F r o m  a fo rmal  point of view for  
these conditions Eqs.  {6) and (7) reduce to the f o r m  invest igated in [4] and [5]. 

A compar i son  of the resu l t s  of the computation using the fo rmulas  of the p re sen t  work with the r e -  

sults of [4] showed no d i sagreements .  

F o r  determining the p r e s s u r e  in the fluid flowing by the rotat ing disk and the fixed wall it is n e c e s s a r y  
to consider  the change of the total momentum of the flow in the mer idional  plane. 

In the cooling s y s t e m s  for  the disks of modern  gas turbines  the amount of heating of the cooling a i r  
is re la t ive ly  smal l  and the re fo re  in the f i r s t  approximat ion the effect  of the nonisothermal  nature  of the 
flow can be d is regarded .  Thus the momentum equation will have the fo rm [4] 

d_PP _~ YrdY r = V A dr. (11) 
p r 

Using the continuity equation and the equation of s tate  

d (FpV~) = 0, (12) 

dR _ k dp (13) 
P P 

and assuming  that the width of the gap r em a ins  constant  along the radius ,  we obtain the following e x p r e s -  
sion for  computing the p r e s s u r e  distr ibution in the centr ipeta l  flow: 
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V a r i a t i o n  of r e l a t i v e  p r e s s u r e  a long  the  r a d i u s  in c e n -  
t r i p e t a l  f low.  Cont inuous  c u r v e s ,  a = 0.1; d a s h e s ,  a = 1.0; 
d a s h - d o t s ,  a = 10; ~ = 0.667: I) 1-Vu, 1 = 0.8; 2) 0.4; 3) 0; H) 

1-Vu, i = --1;  2 ) - - 0 . 6 ;  3 ) - - 0 . 2 .  

t k - - [  

[ 1 ~ 2 ~ -~ 2 
- -  - -  P - , , '  ); (14) ~-~2/k 1 -v M~, l VT~ xdx - -  (1 - t~ 

�9 x"r.~,l k - -  1 
g 

h e r e  the  index  1 deno t e s  the  p a r a m e t e r s  c o r r e s p o n d i n g  to r = r 1 (or x = 1). P r o c e e d i n g  in the  s a m e  way  
and  denot ing  by index  0 the  p a r a m e t e r s  c o r r e s p o n d i n g  to r = r 0, we ob ta in  the  c o m p u t a t i o n a l  f o r m u l a  fo r  
the  c e n t r i f u g a l  f low 

M-~r,o 1 - -  x~- , xo k -  1 k-, �9 (15) pk 
x~ x,O 

H e r e  we have  i n t r o d u c e d  the fo l lowing  d i m e n s i o n l e s s  p a r a m e t e r s .  

P.~,I = Px/P1, [~.~,~ = P~/Po, Mr,1 = V~,i/aso, 

M~, I = oq/aso,  M~,o = Vro/aso, M~,o = coro/aso. 

In the  c a s e  of f low of an i n c o m p r e s s i b l e  f lu id  the  c o r r e s p o n d i n g  f o r m u l a s  a r e  

i 

.~ x ~ - - 1  - §  ~ / ~ x d x =  ~o (1--P.~,O (161 
p(0 r i  " 

x 

fo r  the  c e n t r i p e t a l  f low and 

VT o 1 - -  x5 ~z~ x d x =  2P~ 1 
' x ---~- -~- ~v~- P ~~ Px,0 1 (17)  

f o r  the  c e n t r i f u g a l .  

Knowing  the v a l u e s  of 15x,1 and 15x,0 the  f o r c e  a c t i n g  on the  r o t a t i n g  d i sk  o r  the  f ixed  wal l  can  be d e -  
t e r m i n e d .  

In o r d e r  to i l l u s t r a t e  the  m e t h o d  d i s c u s s e d  above  we c a r r i e d  out a n u m e r i c a l  i n v e s t i g a t i o n  fo r  the  
c a s e  of c e n t r i p e t a l  f low. A s  i s  we l l  known, t h i s  t ype  of f low is  e n c o u n t e r e d  in the  b r e a k i n g  of a t w i s t e d  
g a s  be tween  t u r b i n e  s t a g e s ,  in a s a m p l e  of coo l ing  a i r  beh ind  the b lade  of a c e n t r i f u g a l  c o m p r e s s o r ,  and 
in such  o t h e r  c a s e s .  

T h r e e  p a r a m e t e r s  a,  Vu,1, and ~ a f fec t  the  n a t u r e  of d i s t r i b u t i o n  of the  r e l a t i v e  v e l o c i t y  a long  the  
r a d i u s  of the  d i sk .  

The  g r a p h  of the  v a r i a t i o n  of the  r e l a t i v e  r a t e  of t w i s t i n g  of the  f lu id  in the  gap i s  shown in F ig .  l I  
f o r  t h r e e  v a l u e s  of p a r a m e t e r  a,  d i f f e r ing  by an o r d e r  of magn i tude .  I t  i s  ev iden t  f r o m  the  g r a p h  tha t  f o r  
a -< 1 fo r  l a r g e  m a s s  f low r a t e s  wi th  o t h e r  cond i t i ons  r e m a i n i n g  equa l  the  n a t u r e  of v a r i a t i o n  of the  r e l a -  
t i ve  r a t e  a long  the  r a d i u s  r e m a i n s  p r a c t i c a l l y  unchanged .  Th i s  r e s u l t  i s  e x p l a i n e d  by the  fac t  tha t  the i n i t i a l  
m o m e n t  of m o m e n t u m  of the  f lu id  f lowing into the  gap i s  su f f i c i e n t l y  l a r g e  c o m p a r e d  to the  w o r k  done by 
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f r ic t ional  fo rces  at the wall and disk. There fore  the nature of var ia t ion  of the re la t ive  ra te  of twisting is 
c lose  to the law Vu x2 = const.  

With the dec rease  in the flow rate  (a > 1) the work of the fr ic t ional  fo rces  may cause significant change 
in the nature of twisting of the fluid along the radius;  with the inc rease  of the drag coefficient  at the fixed 
wall compared  t o  the rotat ing disk (~ > 1) a noticeable dec rease  of the ra te  of twist ing is obse rved  in the 
per iphera l  par t .  

On decreas ing  the initial ra te  of twist ing to zero the fluid gets  twisted due to the fr ic t ional  fo rces  at 
the disk. The distribution of the re la t ive  twisting along the radius is shown in Fig. l I I  for  this case .  It  is 
evident f rom the graph that the re la t ive  twisting of the fluid i nc rea se s  with the dec rease  of the flow ra te  of 
air ;  at l a rge  flow ra tes  of a i r  (a <-- 1) the main drag comes  f rom overcoming  the fo rces  of iner t ia  of the a i r  
i tself  and the drag fo rces  at the fixed wall have prac t ica l ly  insignificant role.  

The fluid flowing into the gap may have initial twist ing opposite to the rotat ion of the disk. The r e -  
sults  of computat ions for  this  case  a re  given in Fig. 2. As can be seen, at l a rge  flow r a t e s  (a = 1) the fluid 
ro ta tes  in the direct ion opposite to the rotat ion of the disk; with the inc rease  of the initial twist  the disk 
begins to exer t  a noticeable re tard ing  effect.  With the dec rease  of the flow ra te  (a = 10) the re ta rd ing  a c -  
tion of the disk inc reases  so much that the fluid changes its initial direct ion and begins to rota te  with the 
disk. 

The change in the re la t ive  s ta t ic  p r e s s u r e  was also computed f rom the computed  values  of the re la t ive  
ra te  of twisting of the fluid in the gap (Fig. 3I, II). 

I t  is evident that  an inc rease  of the initial twisting and the flow ra te  of the fluid through the gap be -  
tween the rotating disk resu l t s  in a sha rpe r  change of the static p r e s s u r e  along the radius  and vice v e r s a .  

S imi lar  computat ions were  done also for  centr ifugal  flow, which showed that with the inflow of a non- 
twisted fluid a smal l  change of the stat ic p r e s s u r e  occurs ,  which is caused by a re la t ive ly  smal l  twist ing of 
the fluid f rom the rotat ing disk. 

Thus the p resen t  investigation shows that a sharp  dec rease  of the s ta t ic  p r e s s u r e  may occur  in the 
centr ipeta l  flow of a i r  o r  gas between a rotat ing disk and a fixed wall. The use of this  phenomenon would 
pe rmi t  to inc rease  the eff iciency of l abora to ry  condensation between turbine s tages  by blowing in cold a i r  
into the per iphera l  region with twist  in the direct ion of rotat ion of the disk. 
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N O T A T I O N  

is the d imens ionless  radius;  
is the d imens ionless  p a r a m e t e r ;  
is the m ax i m um  radius  of the disk along which the flow occurs ;  
is the initial radius  of supply of the fluid between the rotat ing disk and the fixed wall; 
is the instantaneous value of the radius; 
is the ra te  of twist ing of the fluid at the midpoint of the gap; 
is the re la t ive  ra te  of twisting of the fluid in the gap at radius  x; 
is the initial c i r cu l a r  veloci ty  of the fluid in centr ipeta l  flow; 
iS the initial c i r cu l a r  veloci ty  in centr ifugal  flow; 
a r e  the initial p r e s s u r e  in centr ipeta l  and centr ifugal  flow, respect ive ly ;  
is the stat ic  p r e s s u r e  of the med ium at a radius  r; 
a r e  the re la t ive  stat ic p r e s s u r e s  of the medium for  cent r ipe ta l  and centr i fugal  flow, r e -  
spectively;  
is the density of the fluid; 
is the coefficient  of fr ict ion at the disk; 
is the coeff icient  of f r ic t ion at the wall; 
is the re la t ive  coeff icient  of f r ic t ion at the wall; 
is the angular  speed of rotat ion of the disk; 
is the m a s s  flow ra te  of the fluid through the cavity; 
a re  the integrat ion constants .  
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